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Abstract—Recently, a new approach to the adaptive control of
linear time-invariant plants with unknown parameters (referred
to as second level adaptation), was introduced by Han and
Narendra in [1]. Based on N(≥ m+1) fixed or adaptive models
of the plant, where m is the dimension of the unknown parameter
vector, an unknown parameter vector α ∈ RN is estimated in the
new approach, and in turn, is used to control the overall system.
Simulation studies were presented in [1] to demonstrate that the
new method is significantly better than those that are currently
in use.

In this paper, we undertake a more detailed examination of
the theoretical and practical advantages claimed for the new
method. In particular, the need for many models, the proof of
stability, and the improvement in performance and robustness
are explored in depth both theoretically and experimentally.

I. INTRODUCTION

For over two decades, there has been a great deal of
interest in developing new methods for rapidly identifying and
controlling linear time-invariant plants with large parametric
uncertainties in a stable fashion. It is argued that such methods
can also be used to adaptively control linear systems with time-
varying parameters without losing stability. Recently, second
level adaptation was proposed in [1], where the information
generated by multiple adaptive models can be used at a
second level to identify the plant rapidly. If the unknown plant
parameter vector is of dimension m, and belongs to a compact
set, it is well known that (m + 1) points can be chosen in
parameter space so that the unknown vector lies in their convex
hull. This is the starting point of second level adaptation. If
m+1 models are chosen with these parameters as their initial
values, it was argued in [1] that the information derived from
them could be used to derive an equivalent parameterization of
the plant which converges much more rapidly. The basic ideas
involved in the new approach can be summarized as follows,
for use throughout the paper:

1) The set Sθ ⊂ Rm in parameter space in which the
unknown parameter θp can lie, is convex.

2) Parameters θ1(t0), θ2(t0), · · · , θm+1(t0) can be cho-
sen such that θp lies in the convex hull of
θi(t0), {i = 1, 2, · · · ,m+1}. This implies that constants
α1, α2, · · · , αm+1 with 0 ≤ αi ≤ 1 and

∑m+1
i=1 αi = 1

exits such that
∑m+1
i=1 αiθi(t0) = θp, θp ∈ Ω.

3) If (m+1) adaptive models are used to identify θp at ev-
ery instant, it can be shown using arguments of linearity
and convexity that θp also lies in the convex hull of θi(t),
(i.e.

∑m+1
i=1 αiθi(t) = θp and θi(t)(i = 1, 2, · · · , n+ 1)

are the estimates of θp generated by the adaptive models)
provided the initial states of the plant and models are

identical. It is worth noting that when the state variables
of the plant are accessible, the initial conditions of the
states of the models can be chosen to be identical to that
of the plant.

4) If the (m + 1) models are non-adaptive but constant
(with θi constant),

∑m+1
i=1 αiei(t) ≡ 0, where ei(t) are

the (m+ 1) identification errors.
5) Since θi(t) in (4) and ei(t) in (5) are accessible, the

conditions

m+1∑
i=1

αiθi(t) =θp

or
m+1∑
i=1

αiei(t) =0

(1)

can be used to estimate the values of the constants αi.
Since by equation (1), the vector α can be considered as
an alternative parameterization of the unknown plant, it
can be used to estimate θp and hence the control input
u(·).

6) The estimate α̂(t) of α can be determined either alge-
braically, or by using a differential equation as described
later.

In this paper we will be interested in the following two
principal questions:

(i) under what conditions would we expect second level
adaptation to result in better performance than first level
(or conventional) adaptation?

(ii) why is the overall system stable even when control is
based on the estimate α̂(t), rather than the true value
of α of the unknown parameter vector? (i.e proof of
stability)

In addition, we will also be interested in questions related
to design and performance such as:

(iii) can the performance and robustness of second level
adaptation be improved by increasing the number of
models? If additional models are to be used, where
should they be located for maximal marginal benefit?

(iv) are fixed models or adaptive models to be preferred?
Can rational reasons be provided for combining such
models?

Starting with a brief review of the theory of second level
adaptation based on both adaptive and fixed models, we
shall discuss the above questions in detail and compare both
theoretically and using simulations, the new approach with



conventional first level adaptive control. The paper will con-
clude with simulations studies of adaptation in rapidly time-
varying environments and a discussion of future directions for
research.

II. MATHEMATICAL PRELIMINARIES

The principal ideas involved in second level adaptation
using multiple adaptive models and fixed models are discussed
briefly in this section. These are used in all the discussions
throughout the paper.

A. Second Level Adaptation (Adaptive models)

We first consider the simplest case where the plant to be
controlled adaptively is in companion form, and all the state
variables of the plant are accessible. The plant is described by
the state equations:

Σp : ẋp = Apxp(t) + bu(t) (2)

where xp(t) ∈ rn, u(t) ∈ R and Ap and b are in companion
form and defined as

Ap =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
a1 a2 a3 · · · an

 , b =


0
0
0
...
1

 (3)

The parameters {ai} are unknown and it is assumed that the
plant is unstable. If θTp = [a1, a2, · · · , an], we shall refer to
θp as the unknown plant parameter vector. We further assume
that θp belongs to a convex set Sθ, where Sθ is a hypercube
in parameter space defined by

Sθ = {θp|θp ≤ θp ≤ θ̄p} (4)

The reference model Σm is also in companion form and
defined by the differential equation

Σm : ẋm = Amxm(t) + br (5)

As in equation (3), the last row of Am is θTm and is chosen
by the designer to make Am stable. The reference input r(t)
is uniformly bounded and specified.

B. Statement of the Problem

The problem of adaptive control is to choose the input u(t)
in the presence of parameter uncertainty so that the output
xp(t) of the plant follows asymptotically the output xm(t) of
the reference model (i.e. limt→∞ ‖xp(t)−xm(t)‖ = 0). Direct
and indirect control are two distinct methods for achieving the
above objective.

Direct Control: In this case, the input u(t) is chosen as
u(t) = kT (t)xp(t) + r(t), where k(t) is adjusted adaptively.
Since it is known a prior that a constant gain vector k∗ exists
such that θp + k∗ = θm, k(t) has to be adjusted such that

limt→∞ k(t) = k∗. If the equations describing the plant and
the reference model are respectively

ẋp = Apxp + bu

ẋm = Amxm + br

Am = Ap + bk∗T

the input u(t) is chosen as

u(t) = r(t) + kT (t)xp(t)

where ˙̃
k = −eTc Pbxp(t), k̃ = k − k∗, ATmP + PAm = −Q <

0. ec(t) = xp(t) − xm(t) is the control error. If V (ec, k̃) =
eTc (t)Pec(t)+k̃

T k̃ is a Lyapunov function candidate, it follows
that

dV (t)

dt
= −eTc Qec ≤ 0 (6)

Hence, the system is stable and ec(t) and k(t) are bounded.
Further, since ėc(t) is bounded, it follows that limt→∞ ec(t) =

0 and limt→∞
˙̃
k(t) = 0 if the input r(t) is persistently

exciting.
Comment: In direct control, the feedback parameter k(t) is

directly adjusted using the control error and system identifi-
cation (or parameter estimation) is not involved.

Indirect Control: In contrast to direct control described
earlier, in indirect control, the unknown parameter vector θp
is estimated at every instant as θ1(t) and in turn used to
control the system. To assure the stability of the estimator,
the following model is used:

˙̂xp(t) = Amx̂p(t) + [A1(t)−Am]xp(t) + bu (7)

where Am is a stable matrix, Am and A1 (like Ap) are
in companion form and the last rows of the two matrices
are respectively θTm and θT1 . The later is an estimate of the
unknown plant parameter vector θp. At every instant, θ1(t) is
used to determine the control parameter vector k(t) as

k(t) = θm − θ1(t)

= θm − [θp + φ1(t)]

= k∗ − φ1(t)

where φ1(t) is the error in the estimate of θp.

Note that in equation (7), Am is chosen to be the same
as the matrix in the reference model (5). However, it can be
any stable matrix. It is chosen as in equation (5) to make the
control problem simple.

Defining e1(t) = x̂p(t)− xp(t), we have

ė1 = Ame1(t) + bφT1 (t)xp(t) (8)

Using standard arguments of adaptive control, the adaptive law

θ̇1(t) = φ̇1(t) = −eT1 Pbxp(t) (9)

follows readily. The adaptive law is seen to be very similar
to that derived from direct control, except that identification
rather than control error is used in (9).
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Note that the control error is not used in the adjustment of
the control parameter k(t). The parametric erorr φ1(t) tends to
zero when the input r(t) is persistently exciting, and converges
to a constant value (if φT1 xp(t) tends to zero) when it is not.
In both cases, the control error tends to zero as seen from
equation (8).

Multiple Models (Adaptive): We now consider N
models used simultaneously to estimate the unknown plant
parameter vectors θp. All of them have identical structures

ẋi = Amxi + [Ai(t)−Am]xp(t) + bu

with xi(t0) = xp(t0), Ai(t) in companion form, and the last
row of Ai(t) equal to θTi (t). This implies that the N parameter
error vectors φi(t) and identification error vectors ei(t) (i =
1, 2, · · · , N) are generated at every instant with the equations

·

{
ėi(t) = Amei(t) + bφTi (t)xp(t), ei(t0) = 0 (10a)

θ̇i(t) = φ̇i(t) = −eTi (t)Pbxp(t), θi(t0) = θi0(10b)

Since
∑N
i=1 αiθi(t0) = θp or equivalently

∑N
i=1 αiφi(t0) = 0

from equation (10a), it follows that
∑N
i=1 αiθi(t) ≡ θp and

from (10b) that
∑N
i=1 αiei(t) = o. Thus we have the two

relations

·



N∑
i=1

αiθi(t) = θp (11a)

N∑
i=1

αiei(t) = 0 (11b)

from which αi can be computed. Further, any m of the (m+1)
signals ei(t) are linearly independent.
Comment: The rapidity with which α can be estimated from
equation (11) determines the extent to which second level
adaptation will be better than first level adaptation. We note
that while θp is estimated using a nonlinear equation (10b), α
can be estimated using linear equations (11).

From equation (11) it is seen that αi can be estimated using
either equation (11a) or equation (11b). Since we treat the
latter in great detail in the context of fixed models, we shall
confine our attention to the first approach based on equation
(11a):

[Θ(t)]α = θp (12)

where Θ(t) is the matrix whose columns are the estimates
of the parameter vectors at any instant t as given by the N
adaptive models. Θ(t) is an [m× (m+ 1)] matrix, α ∈ Rm+1

and θp ∈ Rm. The equation can also be expressed as[
θ1(t)− θm+1(t), θ2(t)− θm+1(t), , · · · , θm(t)− θm+1(t)

]
·


α1

α2

...
αm

 = θp − θm+1

Φ(t)ᾱ = l̄(t)
(13)

where Φ(t) ∈ Rm×m, ᾱ ∈ Rm and l̄(t) = θp − θm+1(t) ∈
Rm. θi(t) − θm+1(t) are linearly independent for all t and
i ∈ {1, 2, · · · ,m} and in equation (13), both α and θp are
unknown. However, if Φ(t) is known at two instants of time
t1 and t2, we can solve ᾱ and hence α in equation (14). This,
in turn, can be used to compute θp and the feedback control
vector

[Φ(t1)− Φ(t2)]ᾱ = l̄(t1)− l̄(t2) = [θm+1(t1)− θm+1(t2)]
(14)

An alternative approach would be to consider the derivative
of Φ(t) which yields

Φ̇(t)ᾱ = −θ̇m+1(t)

or − bTP [e1(2), e2(t), · · · , eM (t)]ᾱ = −bTPem+1(t)

or E(t)ᾱ = −em+1(t)
(15)

which is the same as that obtained in the following section.
Multiple Models (Fixed): The principal results to come

out of the previous analysis, which are contained in equation
(11), are that

∑N
i=1 αiθi(t) = θp at every instant of time t,

and that
∑N
i=1 αiei(t) = 0. A brief examination reveals that

the latter result is also true even if the models are fixed (i.e θi
are constant and not estimated online). Hence once again, αi
can be determined by observing the output error vector ei(t)
of the N models.

If αi are known, the unknown parameter vector θp can be
computed using equation (11), and in turn used to compute
the control parameter vector.
Note: When multiple fixed models are used, the vectors θi
are constant. Hence equation (11a) cannot be used to compute
the vector α, and only equation (11b) can be used.

III. STABILITY ANALYSIS

Estimation of α: From the proceeding discussion, it is
clear that the speed of adaptation is directly proportional to
the speed with which α can be estimated. As in conventional
adaptive control, the estimate α̂ of α can be obtained either
algebraically or using a differential equation. In both cases,
the starting point is the equation

∑m+1
i=1 α1ei(t) = 0. This can

be represented as a matrix equation as shown below:

[
e1(t), e2(t), · · · , em+1(t)

]

α1

α2

...
αm+1

 = 0 (16)

with 0 ≤ αi ≤ 1,
∑m+1
i=1 αi = 1. Since αm+1 = 1−

∑m
i=1 αi,

we have the matrix equation[
e1(t)− em+1(t), · · · , em(t)− em+1(t)

]
·


α1

α2

...
αm

 = −em+1(t)

E(t)ᾱ = −em+1(t)

(17)
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Properties of the Matrix E(t): The identification er-
rors ei(t) of the m models (i = 1, 2, · · · ,m) were defined
as

ei(t) = xi(t)− xp(t) (18)

Since all the columns of the matrix E(t) are of the form ei(t)−
em+1(t), it follows that the ith column of E(t) is merely
xi(t)−xm+1(t) (i.e the difference in the outputs of two fixed
models). Hence, for any input to the m+ 1 models, the entire
matrix E(t) is known, and is independent of the actual plant
output xp(t). It is only the right-hand side of equation (19),
given by −em+1(t) that depends explicitly on the plant output
since

−em+1(t) = xp(t)− xm+1(t) (19)

Matrix Inversion: Since θi− θm+1 are linearly indepen-
dent vectors for i = 1, 2, · · · ,m. It follows that the columns
of E(t) are linearly independent for any finite time t. Hence
E−1(t) exists at every instant, so that theoretically α can
be estimated as α = −E−1(t)em+1 in an arbitrarily short
interval of time. If the plant is unstable, control action with
the estimated value of α can be initiated at the same time
instant.

Simulation 1 In view of the importance of this concept in
second level adaptation, we show the errors e1(t), e2(t) and
e3(t) of three fixed models of an unstable second order
system (with no control) over a finite period of time T
and the corresponding value of αi, (i = 1, 2, 3) such that∑3
i=1 αiei(t) ≡ 0, t ∈ [0, T ]. A stable reference model and

an unstable plant are described by the parameter vectors
θm = [−1,−3]T and θp = [2, 1]. We estimate E−1(t) as

[
−71.5919 5.6376
132.9577 −10.8885

]
,

[
−118.0.91 9.7363
199.8165 −16.6202

]
,

and
[
−334.5461 27.8656
5553.3886 −46.1118

]
(20)

at three instants of time t = 0.5, 1, 1.5 and compute
the estimate α̂(0.5) = [0.3471, 0.2526, 0.4003]T ,
α̂(1) = [0.3474, 0.252, 0.4006]T , α̂(1.5) =
[0.3492, 0.2491, 0.4017]T .Using these values, the feedback
parameters can be computed. The errors in the first state
variable between plant and reference model, when estimation
is carried out at t = 0.5, 1, 1.5 and used to control the plant
at that instant, are shown in Fig. (1).

Fig. 1

Note: The above exercise is merely to indicate that the
procedure is practically feasible. In practice, the estimates used
are derived continuously from differential equations as shown
in what follows.

Estimation Using a Differential Equation: For well
known reasons related to robustness, α is estimated using
a differential equation rather than algebraically. In such a
case α̂(t), the estimate of α is determined by the differential
equation

˙̂α = −ET (t)E(t)α̂− ET (t)em+1(t) (21)

Since the constant vector α satisfies the algebraic equation

ET (t)E(t)α+ ET (t)em+1(t) = 0 (22)

it follows that the error in the estimate α̃ = α̂ − α satisfies
the differential equation

˙̃α = −ET (t)E(t)α̃ (23)

Using the Lyapunov function V (α̃) = 1
2 α̃

T α̃, it follows that

dV (α̃)

dt
= −‖E(t)α̃‖2 < 0 (24)

or equation (23) is asymptotically stable and α̃ → 0. The
rate of convergence depends upon the positive definite matrix
ET (t)E(t).

When α is known, the plant together with the feedback gain
(control) vector θTm−

∑m
i=1 αiθi is asymptotically stable. With

α̂ in the feedback path, the overall system is represented by
the differential equation

ẋp = Amxp + [Θα̃]Txp + br (25)

where Θ is a time-invariant matrix and limt→∞α̃(t) = 0.
Hence, xp(t) tracks xm(t) asymptotically with zero error.
Note: The convergence of α̃ to zero depends only on
ET (t)E(t) and hence on the location of the m models
represented by θ1, θ2, · · · , θm. This provides a rationale for
choosing the location of the models.

Comparison of First and Second Level Adaptation:
The discussion in the proceeding section brings into better
focus the difference between first and second level adaptation.
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In first level (or conventional) adaptive control, the emphasis
is primarily on stability of the overall system. The control
error is described by the equation

ėc = Amec + bθ̃Txp (26)

In attempting to stabilize the system using an approach based
on the existence of a Lyapunov function, the adaptive law

˙̃
θ = −eTPbxp (27)

is arrived at which is nonlinear. As is well known, the analysis
of the system becomes complicated when the errors are large.
In particular, when the initial conditions θ(t0) and ec(t0) are
large, the solution of the equations (26) and (27) is far from
simple. The only fact that has been exploited extensively is
that eTc Pec+ θ̃T θ̃ is a Lyapunov function so that ec and θ̂ are
bounded and limt→∞ec(t) = 0. However, very little can be
concluded about the transient behavior of the system. Hence,
additional methods, as well as arguments, are needed to justify
how satisfactory response can be achieved.

In the new approach, based on multiple models, and second
level adaptation, scores significantly in such a case, since the
differential equation describing the behavior of α̃ continues
to be linear. Further, the designer also has considerable prior
knowledge of the matrix E(t), which depends only upon the
identification models which are known, rather than the plant
which is unknown. This in turn, provides much greater control
over the performance of second level adaptation.

Example 1 To compare the performance of first level (con-
ventional) adaptive control and second level adaptive control,
simulation studies were carried out in the following example

θTm = [−24,−8]; θTp = [5, 3]

and it is known that θp lies in the convex hull of the three
models

θT1 = [−10,−10]; θT2 = [15,−10]; θT3 = [5, 15]

Due to space limitations, the comparison is made only when
the uncertainty is large.

Fig. 2: Parameter Convergence

Fig. 3: Tracking Error

Comment: Fig. (2) demonstrates that the speed of conver-
gence of second level adaptation is orders of magnitude faster
than first level adaptation. While the former converges in 16
seconds, it is seen that adaptation of three first level models
has barely commenced. In Fig. (3), it is seen that the tracking
error (using multiple models) converges in 3 seconds, but the
convergence time for the first level is considerably longer.

Time Varying Parameters: Thus far, the analysis has
been that of the adaptive control of a time-invariant plant,
where θp, the plant parameter vector is unknown but constant.
We have discussed the advantage of using second level adap-
tation over conventional adaptive control when the region of
uncertainty is large. In such a case, the nonlinear effects in the
adaptive algorithm (first level) begin to play a major role in
the convergence of the parameter estimate. In this section, we
deal with time-varying plant parameters, which are becoming
increasingly important in adaptive control.

Let θp(t) be a time-varying plant parameter vector, which
lies in the convex hull of the fixed models θ1, θ2, · · · , θm+1.
Since

∑m+1
i=1 αiθi = θp(t), it follows that α(t) must be time-

varying. Since θi, (i = 1, 2, · · · ,m+ 1) are constant,[
θ1 − θm+1, θ2 − θm+1, · · · , θm − θm+1

]
ᾱ(t)

= θp(t)− θm+1

or Θᾱ(t) = θp(t)− θm+1

(28)

While the equation (28) cannot be used to determine α, it
nevertheless indicates that α(t) can be estimated at least as
rapidly as the variations in θP (t).

First Level Adaptation: The behavior of adaptive sys-
tems with time-varying parameters has been the subject of
the research for several decades. However, useful results
are available only when θp has rapid variation with small
amplitude or slow but large variations. Since θ̃ = θ̂(t)−θp(t),
˙̃
θ(t) =

˙̂
θ(t)− θ̇p(t). In other words, θ̇p(t) is a forcing function

of the nonlinear error differential equation. This accounts for
the difficulty encountered in analyzing adaptive systems with
time-varying parameters.

Second Level Adaptation: The simple equations (11a)
and (11b), which can be used to determine α, were discussed
assuming linearity and time-invariance of the error equations.
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These in turn were used to generate the differential equation
(21) for determining α̂ and consequently the control parameter.

In the time-varying case, the analysis is considerably
more complex, but arguments can be provided as to why∑m+1
i=1 αi(t)ei(t) = 0 is still a valid approximation of the

equation (11b). In the following analysis, we assume that
equation

∑m+1
i=1 αi(t)ei(t) = 0 is a valid approximation of

the equation (11a). Once again, we use α̂(t), the solution of
the differential equation

α̇(t) = −ET (t)E(t)(t)α̂− ET (t)em+1 (29)

to approximate the time varying α(t). Since E(t) depends
only on the output of the fixed identification models, it is not
affected by the time variations in the plant parameters. This is
only reflected in the term ET em+1(t) where em+1(t) is the
output error between the (m+1)th model and the plant. Since
−ET (t)E(t) is an asymptotically stable matrix, the effect of
parameters variations are reflected as bounded variations in
α̂(t), the estimate of α(t). From the qualitative description of
the time-varying problem given above, it is evident that the
analysis of the effect of time-varying parameters is consider-
ably simpler than in conventional adaptive control. As in all
linear systems, the convergence of the adaptive algorithm can
be adjusted using a simple gain parameter.

Example 2 Using both first and second level adaptation,
the following adaptive control problems with time-varying
parameters were simulated. The plant is of third order with
parameter θp(t). Two specific cases were considered as de-
scribed below:

Experiment 1 : θp = [3 + sin(0.5t), 4 + cos(0.5t), 3]

Experiment 2 : θp = [3 + f(t), 4 + f(t), 3]

where f(t) is a square wave with mean value zero, amplitude
1 and period of 40 units.

In Experiment 1 the time-varying parameters vary sinu-
soidally, while in Experiment 2 they vary discontinuously over
intervals of 10 units. In both cases, the objective is to track
a reference signal, which is the output of a reference model
with parameter θTm = [−15,−23,−9].

The variation of θp(t) in R2 is shown Fig. (4a); the
variations of f(t) as a function of time in Experiment 2 is
shown in Fig. (4b).

The response due to first level adaptation and second level
adaptation in Experiment 1 are shown in Fig. (5a) & (5b)
and that for Experiment 2 are shown in Fig. (6a) & (6b).
Fig. (7) show the tracking of the true value of parameter θp
in Experiment 2 using first level adaptation and second level
adaptation. In all cases, second level adaptation is seen to
result in significantly better response that first level adaptation.

Fig. 4: The parameter variation

(a) Single Model

(b) Multiple Model

Fig. 5: Output Tracking Error of Experiment 1

(a) Single Model

(b) Multiple Model

Fig. 6: Output Tracking Error of Experiment 2
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(a) Single Model

(b) Multiple Model

Fig. 7: Parameter Tracking Error of Experiment 2

IV. FIXED MODEL AND ADAPTIVE MODELS

It was seen from the discussions in earlier sections that
either fixed models or adaptive models can be used for iden-
tifying and controlling a plant. Extensive simulation studies
have shown that multiple adaptive models (rather than multiple
fixed models) result in a smoother response. However, the
convergence times are comparable in the two cases. If the
plant parameter is not constant but time-varying, the approach
using fixed models is found to be better, since in the long
run, all adaptive models tend to converge to a single point in
parameter space. This make the approach almost equivalent
to conventional adaptive control. Hence, depending on the
application either fixed or adaptive models can be used in
second level adaptation.

The use of fixed and adaptive models for switching and
tuning is a well investigated approach for adapting to large
uncertainty. The experience gained from those studies are
currently being used to determine how the two types of
models can be combined for maximum effect in second level
adaptation.

V. ROBUSTNESS OF SECOND LEVEL ADAPTATION

The behavior of adaptive systems with different types of
perturbations has been studied for decades under the title of
”Robustness”. In particular,
(i) the effect of input output disturbance

(ii) tine variation in unknown parameters
(iii) the effect of unmodeled dynamics

on the performance of the adaptive system have to be studied
in this context.

We have already seen that second level adaptation performs
significantly better than first level, both when the region
of uncertainty is large and when the plant parameter varies
rapidly with time.

When the output of the plant is corrupted with noise, it
is seen that the matrix E(t) is unaffected while the signal
em+1(t) contains noise. This results in α̃(t) having zero mean
value due to the noise and hence smaller error in the response
of the adaptive system. Hence, second level adaptation is found
to be more robust than first level adaptation in two out of
three cases of interest. The behavior of second level adaptation
in the presence of unmodeled dynamics is currently being
investigated.

VI. CONCLUSION

Second level adaptation based on multiple identification
models appears to have advantages over conventional or first
level adaptive control in regard to every feature of interest to
the designer. It is significantly faster with large uncertainties,
and/or rapid time-variation of parameters, and more robust in
the presence of disturbances. All the advantages are due to the
fact that α, which is an alternative parameterization of θp can
be estimated using linear equations while θ̂p(t) is invariable
determined by nonlinear equations, due to the importance of
stability in adaptive systems.

All the analysis carried out in the paper deals with the
plant in companion form, whose state variables are accessible
for measurement. Extensions to more general representations,
and adaptation using only the input-output of the plant are
currently being investigated.
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