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Abstract— Reinforcement Learning aims to find the optimal
decision in uncertain environments on the basis of qualitative
and noisy on-line performance feedback provided by the
environments. During the past four decades, learning theory
has grown into a vast field in which a very large number of
problems have been studied. One of the primary limitations of
reinforcement schemes, acknowledged by workers in the field,
is their slow speed of convergence. The principal objective of
this paper is to present a new approach, based on the use of
multiple models (or estimates), that may alleviate this problem
and increase the speed of response.

In adaptive control theory, multiple model based methods
have been proposed over the past two decades, which improve
substantially the performance of the system. The authors un-
dertook to apply similar concepts in reinforcement learning as
well, and this paper represents the first effort in this direction.
Simple situations of learning in feed-forward networks are
considered in the paper, and compared to two different schemes.
It is shown that convergence speeds that are more than an
order of magnitude faster than those of the first scheme,
can be achieved in some cases. While the second scheme is
comparable to the new approach in many situations, it is
seen to exhibit undesirable behaviour in others, where the new
approach is more robust. The latter is currently being extended
incrementally and systematically to more complex problems
that have been discussed in the literature. The ultimate aim of
the authors is to apply this approach to learning in discrete
and continuous state dynamic environments.

I. INTRODUCTION

Learning is defined as any relatively permanent change
in behavior resulting form past experience, and a learning
system is characterized by its ability to improve its behavior
with time in some sense. In mathematical psychology models
of learning systems were developed over fifty years ago to
explain behavior patterns among living organisms. These, in
turn, were used to synthesize engineering systems, which
could be considered to exhibit ”learning behavior”.

In the introduction to their book ”Reinforcement Learning:
An Introduction” [1], Barto and Sutton state that the history
of reinforcement learning consists of two main threads, both
of which have evolved over a long period and both of which
enjoy a rich literature. The first is learning by trial and error,
which as stated earlier, started with the psychology of animal
learning. The other thread is optimal control, which is an
integral part of control theory and is based on the pioneering
work of Pontryagin and his coworkers [2] as well as the
classical theories of Hamilton and Jacobi, and the Principle
of Optimality of Bellman [3]. Reinforcement learning aims
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to find the optimal decision (or decision rule) in feedback
with an unknown and uncertain teacher or environment, on
the basis of qualitative and noisy feedback received from
the environment. At the present time there exists a very
large variety of learning models and algorithms ([4]-[13])
depending upon the assumptions made concerning the envi-
ronments. The unifying theme of all these different models
is that the resulting learning behaviors can be considered
as conducting a probabilistic search over the action/decision
probability space to optimize an underlying implicit criterion
function.

One of the primary well known limitations of all rein-
forcement methods proposed in the literature over the years
is their slow speed of convergence([14]). Different authors
have commented on this fact, and, in spite of the many
advances that have taken place in learning theory in recent
years, it continues to be true to this day. This slowness can
be partially attributed to the underlying assumption that the
relevant information concerning the environment has to be
learned from complete ignorance, using only the responses
of the environment to different actions.

In this paper, we introduce a new approach based on
multiple models for improving the speed of response of
learning schemes. In the past, the authors have successfully
developed numerous approaches based on multiple models
for improving the response of dynamical systems in a
conceptually related field, i.e. adaptive control ([15]-[21])
Motivated strongly by the success of such approaches, a
similar effort is being made in this paper in the area of
learning systems. The objective is to investigate whether the
speed of convergence of learning schemes can be improved
substantially, and the extent to which such improvements de-
pend upon the complexity of the system. Further, it was also
decided to test the approach successively on incrementally
more complex problems. While the ultimate objective is to
apply the method to learning in dynamical environments,
only two preliminary stages are reported in this paper. These
include the learning automaton discussed in Section II, and
feed-forward networks considered in Section IV.

II. THE LEARNING AUTOMATON

The learning automaton is one of the earliest reinforcement
learning models in the literature ([22],[23]). An agent can
perform one action out of a finite set of r actions at every
instant into an environment. The environment responds to
each action with either a ”reward” or a ”penalty”. The prob-
ability of action αi yielding a reward is di and dopt=Maxj
dj corresponds to the optimal action. The probabilities di



Fig. 1: Learning Automata

are unknown. The objective is to derive a procedure by
which an agent learns the ”best” action (i.e. αopt, the
action corresponds to dopt) by performing actions in the
environment.

The learning automaton in its simplest form is shown in
Figure (1). The environment E is defined by a set of r reward
probabilities {d1, d2, ..., dr}, corresponding to actions in an
input set α= {α1, α2, ..., αr} and an output set β={1, 0},
where 1 is referred to as a reward and 0 as a penalty.

di = Prob[β = 1|α = αi] αi ∈ α (1)

A. Automaton:

The automaton is a stochastic decision rule which at every
instant n selects an action αi from the action set with a
probability distribution pi(n), and receives a response β(n).
From the action chosen and the response obtained it modifies
the action probabilities using the learning rule

p(n+ 1) = T [p(n), α(n), β(n)] (2)

where T is a mapping.
The choice of T determines the accuracy as well as

the speed of the learning rule. A very large number of
mappings (or learning rules) have been proposed by different
authors([24]-[27])
Comment 1: The principal feature of the learning automaton
is that it is static, has only one state in which the best action
is to be determined, and that a single first order difference
equation describes the learning scheme. In more complex
systems as shown later, such choices may have to be made
at different states and in dynamic environments.

B. Norms of Behavior:

If two learning schemes operate in an environment, the one
that results in favorable responses more often is considered
better. To quantify this we define M(n), which is the average
reward for a given action probability vector p(n).i.e. M(n) =
E[β(n)|p(n)]

Initially, when learning starts, it is natural to assume that

all actions have the same probabilities i.e.
1

r
, and the average

reward is M0 =
1

r
Σdi.

A learning scheme is said to be expedient if the average
reward M(n) > M0, and absolutely expedient if E[M(n+
1)|p(n)] > M(n) for all n and all di, or M(n) is a
submartingale.

A learning scheme is said to be ε-optimal if limn→∞ =
dopt− ε for any arbitrary ε > 0 by the choice the parameters
of the reinforcement scheme.

Among the simple learning schemes suggested in the
literature, the linear reward-inaction scheme suggested by
Shapiro and Narendra in 1969 [28] is found to be ε-optimal.
In this scheme the probability of an action αi which yields a
reward is increased while the probability of an action which
yields a penalty is left unchanged. Further, with a reward, all
the probabilities of the other actions are suitably modified to
conserve probability measure.

Comment 2: Qualitatively, one is interested in choosing
only the best action in the limit. However, the fact that one
action is better than another can be concluded only by trying
both of them. This accounts for many schemes being only
ε-optimal rather than strictly optimal.

C. The LR−I Scheme

1) Two action case { α1, α2 }: When α(n) = αi i =
{1, 2} and result in a reward response (β(n) = 1), the action
probability is updated as

pi(n+ 1) = pi(n) + g[pj(n)] (3)
pj(n+ 1) = pj(n)− g[pj(n)] j 6= i (4)

If the response by choosing α(n) = αi is penalty i.e. β(n) =
0, the action probability is updated as

pi(n+ 1) = pi(n) i ∈ {1, 2} (5)

2) r-actions case { α1, ..., αr }: When α(n) = αi

and results in a reward response (β(n) = 1), the action
probability is updated as

pj(n+ 1) = pj(n)− g[pj(n)] β(n) = 1 (6)
pi(n+ 1) = pi(n) + Σj 6=ig[pj(n)] (7)

g[pj(n)] in the LR−I scheme is apj(n) so that
Σj 6=ig[pj(n)] = a[1− pi(n)]

As in the two action case, the probabilities pi(n) remain
the same for a penalty response.

Comment 3: A simple procedure for increasing the speed
of response is to increase the step-size in the learning
algorithms. However, this also increases the probability of
convergence to a wrong action.

Comment 4: Throughout the paper, we shall use learning
schemes which have the same form as the LR−I scheme for
comparison purposes. The principal difference between the
schemes is the manner in which the probabilities are updated
based on all the available information at that instant.

III. THE PURSUIT ALGORITHM

The Linear Reward-Inaction algorithm described thus far
is a direct scheme which uses only the environmental feed-
back at every iteration. In contrast to this, indirect estimator



algorithms have been proposed in the literature, which use
the entire history of the environmental feedback, to order
the preference of the actions at stage ’n’ [29]. A special
case of such an algorithm is the pursuit algorithm proposed
by Thathachar and Sastry in 1985 [30]. In this scheme, if
action αi is tried Ni times and results in ni reward outputs,
the ratio

ni
Ni

(i=1,2,...,r) is maintained by the automaton and at

every state, the probability of the action αopt corresponding
to Maxi[

ni

Ni
] is updated as defined earlier. The convergence

speed of this algorithm is found, in practice, to be signif-
icantly greater than that of the direct algorithm, and hence
comparison of the new approach proposed must also be made
with this scheme.

In the following we present several studies in which the
multiple-model based approach is compared both with the
Linear Reward-Inaction scheme and the pursuit algorithm.

IV. THE MULTIPLE MODELS APPROACH

In the multiple models approach, several estimates (mod-
els) are chosen to determine which of them explains most
accurately the observed outputs of the environment. Both
fixed and adaptive models can be used for this purpose but
only the former are used in this paper.

If d1, d2,...,dr are the reward probabilities, our main
objective is in ordering them and determining dopt. Towards
this end a finite number of estimates mj (j = 9 in all the
simulations presented) are chosen as {0.1,0.2,...,0.8,0.9}.

If a reward probability (say 0.62) which is unknown
produces a sequence of N1 outputs with n1 rewards and
N1 − n1 penalties the likelihood function for the jth model
is

f [mj , N1] = mn1
j (1−mj)

N1−n1 (8)

At every instant, this is computed for each value of j =
{1, 2, 3, ...9}. Using this information, the likelihood func-
tions can be plotted as functions of n. At any instant N1, the
one that is the maximum can be considered to be closest to
the unknown probability (i.e 0.62). In learning schemes, it
is necessary to determine at every instant which action has
the highest reward probability so that its (action) probability
can be increased as shown in equations (6), (7) for the LR−I
scheme.
Comment 5: From the foregoing discussion, it is clear that
several estimates (models) will be needed for each action, to
order them according to their reward probabilities. Further,
if the system has many states where many actions can be
taken (as discussed in later sections), multiple models would
be needed for every one of them also. This implies that
improvement in the speed of response is obtained at the cost
of additional computation.
Comment 6: In all the simulations presented, as mentioned
earlier, nine models (estimates) distributed uniformly be-
tween 0 and 1 were used. For greater precision (i.e. to
distinguish between probabilities which are closer to each
other) more models may be needed.

Simulation 1: The following simulation illustrates how
the multiple model approach is used in all the learning

(a) Evolution of the likelihood function with p1=0.7, p2=0.3, p∗=0.62

(b) Evolution of the likelihood function with p1=0.7, p2=0.3, p∗=0.45

Fig. 2: Evolution of likelihood functions

schemes. An action α1 has an unknown reward probability
0.62 and is attempted 10 times and yields the sequence
”THTTHHHHTH”, where H denotes a reward and T a
penalty. Using the estimates m1 = 0.7, m2 = 0.3, two
likelihood functions are plotted as shown in Figure (2) as
a function of N1 (Note that -log(f ) is plotted).

At every instant, the likelihood estimate that is a maximum
is concluded to be closest to 0.62. Similarly, if a second
action has a reward probability of 0.45, the same procedure
is adopted to choose the estimate whose distance from 0.45
is a minimum.

The two maxima obtained are used to rank order the two
reward probabilities, i.e. to conclude that the first action is
better than the second.

While only two models (estimates) were used in the
discussion for purposes of clarity, nine models were used in
all the simulations including Simulation 2 discussed below.

Simulation 2: The simulation results obtained in a simple
automaton with nine actions with reward probabilities
{d1 = 0.12, d2 = 0.53, d3 = 0.96, d4 = 0.2, d5 = 0.25,
d6 = 0.32, d7 = 0.44, d8 = 0.72, d9 = 0.8 } are shown
in Figures (3). The nine models are chosen uniformly
distributed in [0,1] as mi={0.1, ..., 0.9}. They show the
convergence of the simple LR−I scheme and the scheme
based on multiple models. While the LR−I scheme takes
approximately 2500 trials, the multiple model approach
reaches a probability of 0.95 for the optimal action, in 250
trials (Figure (3b)).

Comments on the Multiple Model Approach:
Several theoretical questions need to be addressed while
proposing a new approach to learning:
(i) The first concerns the proof that the method is ε-optimal.
(ii) The second is a detailed comparison of the multiple-
model based approach with the pursuit algorithm. This
is particularly important since at every stage the latter



(a) L-RI Scheme with Multiple Actions

(b) Multiple Models with Multiple Actions

Fig. 3: Nine actions with Single Model and Multiple Models

maximizes the value of the likelihood function. It has been
shown in [27], that sample paths of the latter may not
stay inside a fixed neighbourhood of its target, and this is
reflected in simulation studies 3, 4, and 5. The multiple
model approach is seen to result in fast convergence without
exhibiting such behavior.

(iii) The better performance of the new approach has to
be explained on the basis of the prior information assumed
of the environment, the number of models chosen, and their
effect on the convergence properties of the algorithm. At the
present time a detailed study is under-way on all the above
issues.

Comment 7: Since the new approach is significantly faster
than the Linear Reward-Inaction scheme, all the comparisons
made in Simulation 3,4 and 5 are with the pursuit algorithm.

V. LEARNING IN FEED-FORWARD NETWORKS

As stated in the introduction, the number of situations in
which learning is encountered is extremely large. The authors
decided to study the effectiveness of the multiple model
based approach, incrementally, by successively increasing the
complexity of the problem. As stated in the introduction,
while the ultimate aim is to apply it to learning in discrete
state as well as continuous state dynamic environments, in
this preliminary paper we confine our attention to learning in
feed-forward networks, with multiple layers, where actions at
each layer transfers the system to the following layer, and the
reward received by an action depends upon a finite number
of states that follow.

In the following, we describe three simulation studies
which deal with the three networks shown in Figure (4).

A. Structure 1 (Figure 4(a)): Two actions at each state at
layer 2

The structure of the network simulated here is shown in
Figure (4a), and has three layers (i.e. 0, 1 and 2). Only two
actions α1 and α2 can be performed at layer 0 and transfer

(a) Structure 1: Two actions at each state at layer 1

(b) Structure 2: Nine actions at layer 0

(c) Structure 3: Three layers

Fig. 4: Three Feed-forward Networks

the system to either state x1 or x2. The transition probability
matrix is P1

P1 =

[
p11 p12
p21 p22

]
=

[
0.5 0.5
0.2 0.8

]
(9)

where pij is the probability that actions αi transfers the state
x0 to xj(j=1,2).

Actions {β1, β2} at state x1 and {γ1, γ2} at state x2
transfer the system probabilistically to state x3 and x4
respectively. M and N are transition probabilities defined
by

M =

[
M13 M14

M23 M24

]
=

[
0.1 0.9
0.4 0.6

]
(10)

N =

[
N13 N14

N23 N24

]
=

[
0.8 0.2
0.5 0.5

]
(11)

where Mij= {transition probability from x1 using actions
βi(i = 1, 2) to states xj(j = 3, 4) } and Nij={transition
probability from x2 using actions γi(i = 1, 2) to states
xj(j = 3, 4) }.

On reaching the states x3 and x4 the system receives the
reward 10 and 20 respectively. The objective of the learning
scheme is to determine the optimal actions αi, βj and γk
(i, j, k={1, 2}) at states x0, x1 x2 respectively.
Algebraic Part (Optimization):
Before proceeding to simulate the given problem we compute
the optimal actions assuming that the matrices P , M and N
are known. (In adaptive control, this has been referred to as



(a) Single Models Response of α1 and α2 for Structure 1

(b) Multiple Models Response of α1 and α2 for Structure 1

Fig. 5: Response of actions α1 and α2 for Structure 1

the algebraic part of the problem. In learning schemes, it
becomes a problem of optimization).
Computation of Optimal Actions:
If P , M and N are known, the expected rewards with
actions β1, β2, γ1, γ2 can be computed as 19, 16, 12 and 15
respectively. This implies that β1 is the best action at state
x1 and γ2 is the best action at state x2.

Knowing the expected rewards of the optimal actions β1
and γ2, the optimal action at x0 can be determined as α2

(The rewards for α1 and α2 are 16.2 and 18.2 respectively).
Simulation 3:
In the simulation studies we are interested in, the action

probabilities of α2, β1 and γ2 to converge arbitrarily close
to 1. Due to space limitations, only the evolution of the
probabilities for α1, α2 and the time for convergence using
both the pursuit algorithm and the multiple model approaches
are shown in Figures (5).

B. More Complex Systems

From Structure 1, the improvement in performance using
multiple models is seen to depend on the number of proba-
bilities of reward that has to be estimated (or ordered). Simu-
lations 4 and 5 demonstrate that this is indeed the case, when
the number of actions in layer 0 is increased (Simulation 4)
and when the network has 3 layers (Simulation 5).

Simulation 4 (Structure 2, Figure 4 (b)): The structure of
the system in simulation 4 is similar to that in Simulation 2,
with the exception that the action set at layer 0 consists of
9 actions{α1, ..., α9}. The transition probability from x0 to
x1 using action αi is di (and hence to x2 is 1-di). The value
of di were chosen as follows:
{d1 = 0.12, d2 = 0.53, d3 = 0.96, d4 = 0.2, d5 = 0.25,
d6 = 0.32, d7 = 0.44, d8 = 0.72, d9 = 0.8 },
Since the transition probabilities from x1 and x2 to x3
and x4 remain the same, the expected rewards with actions
β1,β2,γ1,γ2 are also the same as in simulation 2 (i.e. 19,16
and 12,15).

(a) Response with Single Model for Structure 2

(b) Response with Multiple Models for Structure 2

Fig. 6: Response of actions α1, α2, · · · , α9 for Structure 2

(a) Response of Single Model for Structure 3

(b) Response of Multiple Models for Structure 3

Fig. 7: Response of actions α1, α2 for Structure 3

From the probabilities di, the optimal action can be
computed to be α3 (with probability d3 = 0.96).

The rapid convergence of the multiple model based ap-
proach relative to the pursuit algorithm is shown in Figure
6(a) and (b). It is worth noting that the convergence of even
a sample path is relatively smooth in the former case. In the
sample paths shown in Figure 6(a) for the pursuit algorithm
a non-optimal action is chosen with the highest probability
for the first 400 trials.

Simulation 5 (Structure 3, Figure 4 (c)): The structure
used in simulation 5 (Figure (4)(c)) has three layers with
states x1 and x2 at layer 1, x3 and x4 at layer 2 and
x5 and x6 at layer 3. The actions in sets {α1, α2} at x0,
{β1, β2}, {γ1, γ2}, {δ1, δ2}, {ξ1, ξ2} in states x1, x2, x3
and x4 respectively, have to be determined to optimize the
expected reward.



The learning algorithms in layers 1 and 2 have to converge
before the optimal action in the set α can be determined. In
the simulation depicted in Figure 7, the multiple-model based
approach is found to be significantly faster than the single
model based approach.

Note: It is to be noted that 100 models corresponding to
the ten actions had to be used to realize the approximately
twenty times faster response realized in the simulation.

Comment 8: While in many simulation studies, the mul-
tiple model based approach and that using the pursuit algo-
rithm behave in a similar fashion, situations also exist when
a non-optimal action is chosen for a long interval using the
latter before the probability of the optimal action tends to a
value close to unity. The simulations shown in Figures 5, 6
and 7 are illustrative of such responses. The theoretical work
that is currently under-way aims to explain this behavior.

VI. CONCLUSION

A new approach based on the use of multiple estimates
for improving the convergence of learning schemes is
proposed in this paper. Simulation studies using simple
learning automata, and feed-forward learning schemes,
are included. The principal objective is to compare the
performance of such learning schemes using either a Linear
Reward-Inaction scheme or the pursuit algorithm to that
obtained using multiple models. The results clearly indicate
that the multiple model based schemes are clearly an order
of magnitude faster than the former but comparable in
speed to the pursuit algorithm over some sample paths.
The latter, however, exhibits convergence behavior which
makes it unattractive in learning situations. In contrast to
this the multiple model based approach is both fast and
robust. Theoretical investigations are currently in progress
to explain the differences between the two approaches.
The speed and robustness of the convergence of multiple
models provide ample evidence that the new approach may
also prove significantly better in more complex learning
contexts, where learning has to be carried out in general
dynamic environments.
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