
A Boosting-based Deep Neural Networks Algorithm for Reinforcement
Learning

Yu Wang† and Hongxia Jin†

Abstract— In this paper, a new boosting-based deep neural
networks algorithm is designed for improving the performance
of model-free reinforcement learning structures. Based on
theoretical proof and performance analysis, it is going to
demonstrate that the new approach gives a faster convergence
speed and a better return compared to existing deep neural
network based RL approaches, like deep Q network (DQN)[30],
[13] and etc. A complete and detailed exploration of the new
algorithm will be given in the paper as well. Also, simulation
studies are conducted and compared with several other RL
algorithms on the RL benchmark experiment tasks as given in
[22]. The results demonstrate a great performance improvement
on Q learning by using our new boosting-based deep neural
networks algorithm.

I. INTRODUCTION

The attractiveness of reinforcement learning is that it im-
itates human’s learning behavior to some extend, and obtain
an optimal result based on one’s collected rewards through
the entire learning procedure. This concept of reinforcement
learning has a long history. Some of the earliest results can be
traced back to 1960s, when Bellman gave the definition of
Dynamic Programming, and also a corresponding solution
using Bellman equation in his book ([1]). Other research
groups, during the same period of time, started invegating
the topic as a stochastic optimal control problem, and solved
it from the view as control scientists ([2]). In 1990s, the
reinforcement learning problem becomes popular in the
computer science community. A well accepted definition of
”reinforcment learning” is given by involving the discounted
expected rewards in a Stochastic Markov Decision Process
(MDP) ([4]). Some of the popular conventional reinforce-
ment learning schemes includes Temporal differences (TD),
Q-learning, SARSA, Approximate dynamic programming
(ADP)etc. ([5]-[9])

Though the popularity of various reinforcement learning
schemes, the difficulty of implentation in real environment
and the slow training speed, especially due to the large
number of states and actions, has constraint the development
of applications using reinforcement learning. Recently, a
group of researcher proposed a new reinforcement method-
ology, named ”deep Q network/learning (DQN)” ([13]), by
applying a neural network to identify the unknown Q value
function. It has been a popular research topics due to its
feasiblity for large states space [15] or even continuous
state space ([16]).The approach can reduce the computational
complexities to find the optimal Q values at each state

†: Both Yu Wang and Hongxia Jin are with Samsung Research America,
Mountain View, CA

by estimating the non-linear Q functions through a neural
network ([17]). Researchers also try to use space-sampling
approach to improve the speed of learning ([8], [27]). Despite
the success of the algorithms, some of the theoretical analysis
of using NN to identify Q function hasn’t been discussed,
and also the training speed of neural network identifier
itself are still a barrier to further expand the idea into more
complicated problems in reinforcement learning field.

In this paper, a new boosting-based deep neural networks
(BDNN) algorithm is proposed for improving the perfor-
mance of model-free reinforcement learning. The idea is
using the boosting information from multiple neural net-
works to identify the unknown Q value function. Instead
of only adjusting neural networks through back-propagation,
in our new algorithm, a gradient based adjustment of convex
boosting parameters for multiple neural networks is designed.
Without loss of generality, the model-free based RL algo-
rithm on which our new algorithm is implemented is chosen
as deep Q network in this paper.

The paper structure is organized as following: Section
2 gives a general background overview of reinforcement
learning, Q-learning, neural network for system identification
and deep Q networks. A detailed boosting-based deep neural
networks (BDNN) algorithm for deep Q-learning is demon-
strated in Section 3. Section 4 is the experiment section
by comparing our new designed boosting-based deep neural
networks algorithm with several other deep neural network
based approaches.

II. BACKGROUND

A. Reinforcement Learning and Q-learning

1) Reinforcement Learning: Most of the general rein-
forcement learning problems are formed under a Markov
Decision Process (MDP) environment. The MDP process
is developed in a stochastic manner, i.e. the next state can
be reached by an action at a specific state is supposed to
be random in some manner (or with some probabilities).
Figure(1) demonstrates a general structure of reinforcement
learning problem.

2) Q-Learning: Q-learning is one of the most popular
model-free reinforcement learning scheme, it use the Q val-
ues to store the expected reward information to be optimized
in reinforcement learning and the optimal Q-values should
obey Bellman equation

Q∗(s, a) = Es′ [r + γmaxa′Q∗(s′, a′) | s, a] (1)

Agent

Environment

,t ts r
States, Rewards taActions

Fig. 1: General Reinforcement Learning Structure

where s ∈ S is the state space and a ∈ A is the action space,
and Q(s, a) is the action-value function and Q∗(s, a) is the
desired value function such that Q→ Q∗ when i→∞.

Most of the Q value based schemes can be updated by
using an iterative approach solving Bellman equation. In
general, they can be represented as:

Qt(s, a) = Es′ [r + γmaxa′Qt+1(s
′, a′) | s, a] (2)

As a very mature reinforcement learning scheme, there are
a lot of literatures to explain the algorithm in detail ([18])-
([20]), hence only the most general updating rule is given as
above.

It should be noticed that it is almost impractical to
implement algorithm (2) in practice, as the learning is totally
on-line, and people who want to obtain the estimated Q value
should pretraining the algorithm in real applications (like
robotics, games etc.), where high costs will be generated.
For example, if someone wants to implement the Q-learning
in controlling an unmanned vehicle, it is supposed to update
the Q value while the vehicle is running on highway (which
is the real environment). Otherwise, the Q value generated
from any simulated environment will be deviated from its
true value, as Q itself does not have any physical meaning
in the environment besides it is am action value function.

Some of the solutions to overcome this issue in engineer
field, is to build a parametrized estimator function Q(s, a, θ)
to identify Q∗(s, a) and try to make Q(s, a, θ) to be as close
as possible to the Q∗(s, a) by adjusting value function’s
parameter θ.

3) Deep Q Network/Learning (DQN): As mentioned ear-
lier, one of the major issue in Q-learning is that the algorithm
itself, does not works well if the state space is large or
even continuous. It is requires a lot of memory space to
store all the Q values for every state, and further affect the
convergence speed and returns of the system.

One of the solutions for the above issue is given as
deep Q learning. In the deep Q learning algorithm intro-
duced in ([13]), a convolutional neural network (CNN) is
implemented to identify the unknown Q(s, a). In general,
any feed-forward neural network structure can be used to
implement the DQN algorithm depending on the requirement
of application. The fundamental principle of the algorithm
is an optimization problem by minimizing the loss/error

State

Action

1i

2i

ni

1h

2h

nh

Q
1

Q
2

Q
n

Fig. 2: Deep Q-learning Structure

function given by

Lt = Es,a[

k∑
i=1

(yt(i)−Qt(i))
2] (3)

where yt(i) is the ith output generated from the neural
network at time step t, and k is the total number of y labels.
The deep Q network in [13] is a special neural network based
Q learning algorithm developed using experience replay. A
general detailed neural network based identification structure
for Q-learning is shown as in Figure (2):

Comment: The action in dash box is optional for the
structure, which depends on the input of the model. In the
Atari example given in ([13]), only the image frames state
information are used as the input of the network.

Though the simulation result given by the team is quite
satisfactory, the authors also mention that the algorithm is
mostly empirical and there is also no guarantee of conver-
gence using DQN due to its unsupervised training property.
In this paper, our new boosting-based deep neural networks
(BDNN) algorithm is trying to improve the convergence by
training the boosting coefficients of multiple neural networks
in a synchronous manner.

In the following sections, some of the most important
theoretical results and challenges in the deep Q-learning
will be firstly addressed, then a new concept of using
boosting-based deep neural networks (BDNN) algorithm for
reinforcement learning will be proposed.

B. Challenges in DQN

In this subsection, two major challenges in Deep Q-
learning will be discussed. One is the training speed in deep
Q network and the other is the convergence issue in DQN.
We will first discuss the convergence of NN-based Q-learning
before giving the issues of convergence in DQN..

1) Speed of training DQN: During the replication of
the examples given based on the deep Q-learning (DQN)
algorithm in ([13]), the training speed is extremely slow even
for games like Atari. As described by the DQN algorithm, the
neural network is trained based on a group of tuples of states
and actions, i.e., et=(st, at, rt, st+1) in the reinforcement
learning loop as shown in the Figure (1). The data set et
is generated by replaying the game and pooled out many
tuples into a replay memory. The slow speed of training an

DQN is mainly because of the slow training speed of neural
network itself.

In order to improve this result, a boosting-based deep
neural networks (BDNN) algorithm is designed and trying
to avoid the issue mentioned above by separately training a
new set of convex boosting coefficients for multiple neural
networks.

2) Convergence of NN-based reinforcement learning: One
of the basic questions in NN-based reinforcement learning
approach is that why a neural network can be used to
substitute the Q function in a conventional Q- learning
approach. Using neural network as an identification model
is a topic has been discussed widely under many control
schemes ([3],[26]), including the feasibility of using recur-
rent neural network structures like LSTM ([21], [31]). The
proof can be divided into two steps. The first step is show
that the neural network approach can identify the nonlinear
Q values generated by the general Q-learning iteration in
(2), by using the Universal Approximation Algorithm, as
long as appropriate initial condition is given and the neural
network is complicated enough. The second step of the
proof is given directly by the general Q-learning approach
in equation (2) can converge to the optimal Q value, i.e.
Q∗, in Bellman Equation. the The first step of proof will
be contributed by the Stone-Weierstrass Theorem and the
Universal Approximation Theorem, the second step of the
proof will be given by the fact that the Q functions obtaining
from the existing Q-learning approaches satisfying equation
(2) is a non-linear solution of Bellman equation.

Following is the well-known The Stone-Weierstrass The-
orem

Proposition 1: The Stone-Weierstrass Theorem:
Suppose X is a compact Hausdorff space and A is a

subalgebra of C(X,R) which contains a non-zero constant
function. Then A is dense in C(X,R) if and only if it
separates points.

By following the Stone-Weierstrass Theorem, the Uni-
versal Approximation Theorem for neural network can be
further given as below. A general well-accepted form is as
following:

Proposition 2: The Universal-Approximation Theorem
Let ϕ(t) be a nonconstant, bounded, and monotonically-

increasing continuous function. Let Im denotes the m-
dimensional unit hypercube [0, 1]m. The space of continuous
functions on Im is denoted by C(Im). Then, given any
function f ∈ C(Im) and ε > 0, there exists an integer N ,
real constants vi,bi ∈ R and real vectors wi ∈ Rm, where
i = 1, · · · , N , such that we may define:

F (x) =

N∑
i=1

viϕ
(
wT

i x+ bi
)

(4)

as an approximate realization of the function f where f is
independent of ϕ ; that is,

|F (x)− f(x)| < ε (5)

or all x ∈ Im. In other words, functions of the form F (x)

are dense in C(Im).
The Universal Approximation Theorem gives a simple fact

that: if the neural network itself is large enough and the
initial conditions are properly chosen, it can approximate
any non-linear continuous function. A strict proof is given
by Theorem 1.

Theorem 1 Convergence of Neural Network identification
for Q functions satisfying (2).

Let ϕ(t) be a nonconstant, bounded, and monotonically-
increasing continuous function. Let Im denotes the m-
dimensional unit hypercube [0, 1]m. Given any values Q(st)
satisfying (2) and Q(st) ∈ D(Im), i.e. the states information
at time t and the element in st is normalized within [0, 1],
D(Im) is a discrete space of Im and ε > 0, there exists
integers M and L, real constants vj ,bj ∈ R and real vectors
wj ∈ Rm, where j = 1, · · · , L, such that we may define:

N(st) =
L∑

j=1

vjϕ
(
wT

j sT + bj
)

(6)

as an approximate realization of the function Q(st). And for
all i > M , such that:

|N(st)−Q(st)| < ε (7)

for all st ∈ Im.

Proof: The theorem itself is a simple derivation of the
Universal Approximation theorem for time-varying function,
the extra proof for the difference is that Q(e) will converge
to Q∗ a discrete function in D(Im), which is a subset of the
continuous function space C(Im), hence the result from the
Universal Approximation Theorem can be carried out to the
proof of the convergence of Neural Network identification
for reinforcement learning.

By the convergence of the general Q-learning algorithm
given by (2), ∃M1 ∈ Z+ such that for all i > M1 and ε > 0,
the following inequality

|Q∗(st)−Q(st)| <
ε

2
(8)

is satisfied.
Also, by Universal Approximation Theorem, it can be

shown that ∃ M2 ∈ Z+ for all i > M2 and ∀ ε > 0, such
that

|N(st)−Q∗(st)| <
ε

2
(9)

By combining the inequality (8) and (II-B.3), it can be
shown that for ∀ ε > 0, ∃M = sup{M1,M2}, such that for
all i > M

|N(st)−Q(st)| < |N(st)−Q∗(st)|+ |Q∗(st)−Q(st)|

<
ε

2
+
ε

2
= ε

(10)

Hence the above theorem is proved. �
3) Convergence issue in DQN: In reality, as discussed

earlier, it is not possible to guarantee the convergence of a

DQN. The main reason is because that the value Q(s) is also
an estimated value in order to make the algorithm work in
large state space, hence is not based on the known Q tables.
Q(st), the value function in iteration t, is estimated as

the sum of current state reward plus future states’ expected
rewards:

Q(st) = rt + γmax
at+1

N(st+1, at+1) (11)

where γ ∈ [0, 1] is the discount factor, and st+1 is a neighbor
of st.

This generates the convergence issue in DQN as
N(st+1, at+1) is an estimated value from the neural network.
The proof given in () becomes the difference between two
network estimated values. It is an unsupervised learning and
the convergence cannot be guaranteed.

III. BOOSTING-BASED DEEP NEURAL NETWORKS
(BDNN) FOR Q-LEARNING

Last section gives a proof of the convergence of neural
network to the Q value functions in DQN, which shows the
reason that why DQN can converge as the conventional Q
learning approach in theory but not practically.

The other challenge, which is the slowing training speed
of neural network, however, is also a hard issue to be tackled.
Many algorithms has been tried to improve the training
speed of neural networks in the last several decades, and
the back-propagation still the main reason limits the speed
of a network’s convergence. In this section, a new boosting-
based deep neural networks (BDNN) is attempted for the
issue. Better experimental results are observed for a faster
convergence and better reward returns on several benchmark
experiments, which give the possibility that it can be an
improving approach from conventional DQN. The detail
algorithm is illustrated in section 3.1 and 3.2. A explanation
on why BDNN may give a faster convergence speed and
better return will be given in section 3.3. Experiment results
are given in section 3.4.

A. Structure of BDNN

Following is a graphical explanation of Boosting-based
deep neural networks for Q-learning.(Figure (3)). A convex
boosting combination of N neural networks’ output is used
as the output of the entire network for identifying and
learning the Q value function, where the neighbors or a
reachable set of state st is represented as B(st).

In the structure shown in Figure (3), n Neural Networks
N i(i = {1 · · ·n}) with the same network structure (number
of layers and hidden nodes)are used and connected by n
convex boosting coefficients αi, which have values within
the range [0,1]. The boosting-based deep neural networks
satisfy the following three properties:
1.
∑i

αi=1. (i = {1 · · ·n})
2.
∑i

αi(0)N i(0)=N(0)
3.
∑i

αi(∞)N i(∞)=N(∞)

(, ;)t t tQ s a

+

-

te

ˆ
ty1

tNeural Network ：

1ˆ
ty

2ˆ
ty

ˆ n

ty

Delay

tQ

(,)t ts a

1N

2NNeural Network ：

Neural Network ： nN

2

t

n

t

Fig. 3: Boosting-based deep neural networks for Deep Q-
learning (BDNN) Structure

where N(·) is a virtual model satisfying the properties 2
and 3, and sharing the same structure as each single model
N i. The first property is the convex criteria need to be
satisfied for αi. The second property claims that the convex
sum of the initial values for each model should be equal
to that of the virtual model, and the third one indicate that
the convergence of each single neural network in the convex-
based boosting structure should be equal to that of the virtual
model.

Comment: The major reason to introduce a virtual model
is to simplify the representation of n convex boosting-based
NN models. Also it will be used as a comparison model to
conventional neural network for identification purpose.

B. Mathematical Representation

According to the system structure given in Figure (3),
a detailed mathematical representation of BDNN can be
formulated as:

lim
t→∞

Q(st, at, θ(t)) = lim
t→∞

N(st, at, wt)

= lim
t→∞

n∑
i=1

αiN i(st, at, wt)
(12)

where N i are n neural networks N i(i = {1 · · ·n}) with the
same network structure (number of layers and hidden nodes)
but different initial conditions N i

0. Also both the convex
boosting coefficient αi and the networks N i will satisfy the
three properties demonstrated in section 3.1.

The proof of the convergence of the BDNN follows by the
single neural network for identification of Q value function.
According to the third property given in section 3.1, i.e.∑

i

αi(∞)N i(∞) = N(∞) (13)

The outputs at convergence of BDNN for Q-learning struc-
ture will be the same as the result of a single NN structure. A
simple mathematical explanation following Theorem 1 will

+

-

Delay

te

1((), ,)t t tN Q s s a

1
ˆ

ty

ˆ
ty

tQ

(,)t ts a

(,)t ts a

(, ;)t t tQ s a

Fig. 4: Series-Parallel Learning Model

be like:

|
∑
i

αi(∞)N i(∞)−Q(∞) |=| N(∞)−Q(∞) |< ε (14)

where the definition of ε and Q will follow those in Theorem
1.

C. Learning Algorithm of BDNN

The learning algorithm in BDNN for deep Q-learning is
the most important part to be addressed in this paper. The
learning procedure can be divided into two parts mainly: one
is training multiple neural networks to identify the Q value
function, which is very similar to the conventional approach,
the other is the training of convex boosting parameters
using gradient based approach, which is very important for
improving the performance of deep Q-learning.

1) Neural Network identification using BDNN: The learn-
ing process includes building (an) appropriate identification
model(s) to estimate the real Q action-value function. The
basic target is to minimize the identification/learning error
between the constructed neural network model and real Q
value function. Based on the prove Theorem 1 in section
2, by properly choosing the size and parameters of neural
network, the nonlinear Q value function given by (2) can
be identified or learnt by NN under relatively weak initial
conditions. The learning of Q value function for each NN
model Ni in BDNN is similar to that of the single neural
network case in DQN. One of the most popular identification
approach using NN is the ”series-parallel” model ([3]). The
series-parallel model takes advantage of both the output
signal Q(st) from the real Q value function and ŷit from
the estimator. The model has the form:

ŷit = N i[Q(st−1), st, at] (15)

where Q(st−1) is the real Q value obtained through the on-
line learning process at time instant k − 1. Noticing that on
the right hand of the equation, Q(st−1) is used to substitute
ŷit−1 to ensure the convergence. The learning process, on
the other hand, requires the accessibility of past learning
system output, which is true for most of the time. Following
is a graphical illustration for the series-parallel model (Figure
(4)):

Comment: Noticing that in the for the model described in
Figure (4), only one step of previous output information (i.e.
k-1) is used, there are also cases that multiple previous steps
of output can be fed back into the system. The discussion of
the these will be included in future papers.

2) Convex Boosting Coefficient Learning in BDNN: An
important part of the algorithm is the convex boosting
coefficient learning using neural networks. The idea is gen-
erated from the second level adpative control using convex
parameters in ([6], [12], [14]). Similar idea of adapting the
convex weights of each model using gradient based approach
is applied here to identify Q functions through a boosting of
multiple neural networks.

In previous section, a convex boosting-based deep neural
networks is introduced. The corresponding gradient based
learning approach for obtaining the convex boosting coeffi-
cients αi will be discussed in this section. An explanation of
why this ”add-on” coefficient learning may generate a faster
learning response will be discussed in next section.

Figure (3) shows a detail structure of a boosting-based
neural networks. The output of the identification model ŷt
is a convex boosting of n neural network models’ outputs
ŷ1t , · · · , ŷnt , as follows:

ŷt = α1
t ŷ

1
t + · · ·+ αn

t ŷ
n
t (16)

Qt is a simplified representation of the value of Q function
at iteration t. Also defining the system output errors as:

et = Qt − ŷt (17)

Substituting (17) into (16), and combining with the convex
property that αn=1-

∑n−1
i=1 α

i, a rearranged form of et can
be obtained

et = Qt − (α1
t ŷ

1
t + · · ·+ αn

t ŷ
n
t)

=

n∑
i=1

αi
tQt − (α1

t ŷ
1
t + · · ·+ αn

t ŷ
n
t)

=

n−1∑
i=1

αi
te

i
t + αn

t e
n
t

=

n−1∑
i=1

αi
te

i
t + (1−

n−1∑
i=1

αi
t)e

n
t

=

n−1∑
i=1

αi
tẽ

i
t + ent

(18)

where eit is defined as the output error between the ith

neural network model and Q value function in tth iteration,
i.e. Qt − ŷit, and ẽit is the difference between eit and eit, i.e.
ẽit , e

i
t − ent , which is the error differences between the ith

and nth model.
The error equation obtained from (18) can be further

simplified when k →∞ and limk→∞ et = 0:

−ent = ẼT
t α̃t (19)

where −ent is the error between the nth model and Q value
function in kth iteration. Ẽ ∈ R1×(n−1) is a vector defined
as [ẽ1, · · · , ẽn−1], as well as α̃ = [α(1), · · · , α(n−1)] ∈

R1×(n−1).
The update rule for α̃ can also be derived by multiplying

Ẽ on both sides of the equation, and move the left hand side
of the equation to the right:

α̃t − α̃t−1 = −ẼẼTα̃t−1 − Ẽent

α̃t = α̃t−1 − ẼẼTα̃t−1 − Ẽent
(20)

Hence, equation (20) has become the new back propagation
law for updating the convex parameter α̃t, which will give us
the first n−1 elements in the convex coefficient vectors α =
[α1, · · · , αn]. By the convex property of α, the last element
αn can be obtained by 1−

∑n−1
i=1 α

i once α̃ is obtained.
Also, for each single neural network model, its weights

will be updated by the standard back-propagation law using
the model error ei, which has been illustrated in detail in the
first part of section 3.3. It should be noticed that the update
procedure of α̃ and each network’s weights are both on-line
and in a simultaneous manner.

D. Performance analysis of BDNN

In the boosting-based multiple neural networks structure, a
new set of convex boosting coefficient vector α is introduced.
The question involved is that how this new parameter can
change the performance of neural networks. Two properties
will be claimed here as below:
1) The error between α and its true value α∗ is decreasing
exponentially with respect to the iteration round number t.
2) The BDNN learning system will converge when α con-
verges, i.e.

∑n
1 α

iN i
t=yt, once αi=αi∗ for all i ∈ {1 · · ·n}.

The first property can be easily obtained from equation
(20). As it is shown, the change difference of α is pro-
portional to its last iteration’s value. Hence, an exponential
property will be given by solving the difference equation.
The interesting property is the second one, which indicates
that the convergence speed of α dominates the identification
speed , as that of conventional back-propagation part for
training the weights of each neural networks is far inferior
than the exponential convergence. The error e is defined as
the convex boosting of all models’ errors:

et =

n∑
i=1

αi
tN

i −Qt

=

n∑
i=1

αi
t(N

i −Qt)

=

n∑
i=1

αi
te

i
t

(21)

where the convex boosting coefficient property of
∑n

i=1 α
i =

1 is applied. Equation (21) indicates that only the convex sum
of error ei, i.e.

∑n
i=1 α

iei, needs to be zero for identification,
instead of single model error ei → 0. It gives the potential
reason that why the boosting-based approach gives a better
learning response than the conventional DQN.

E. Choice of n - number of attention coefficients/neural
networks

The convex property of
∑n

i=1 α
i = 1 gives us a possibility

to design the gradient based law as shown in equation
(20), by ensuring the robustness of the system and speed
of convergence at the same time. Also, noticing that αi is
within a range [0, 1], which gives us a relatively short range
for parameter to update, which is another potential reason
that why it may converge much faster than the network
itself using back-propagation. The choice of n, which is the
number of neural networks or convex coefficients, depends
on the system complexity, will be briefly discussed here.

Assume the output of the Q value function has a dimen-
sionality of M , which is formed by the product of number
of states S and number of actions A, i.e. M = S ×A.

By the definition of convex, in order that the convex
boosting coefficients given by equation (16) has at least one
solution, the number of neural networks or convex boosting
coefficients n should be equal or larger than M + 1, which
gives us a lower bound of n.

On the other side, the upper bound of n is not limited,
however, the speed of the training process will be greatly
affected as the number of neural networks increases. This
should be another factor how an appropriate n to be selected.

IV. EXPERIMENT

A. Setup

In our experiment, we are testing our new BDNN based Q-
leaning algorithm with several other popular reinforcement
algorithm on three benchmark experiments (Walker, Swim-
mer and Cheetah) as given in ([22]). We first compared our
algorithm with several policy-based algorithms, including
DDPG ([23]),TNPG ([24], [28], [29]) and TRPO ([25]). And
furthermore, we added DQN ([13]) into our comparison list
as our algorithm is based on it as well. The experiment setup
using DDPG ,TNPG and TRPO follows the one given in [22].
For DQN and our BDNN model, we use a feedforward neural
network with 3 hidden layers, consisting of 100 hidden units
with tanh activation function at the first two hidden layers.

B. Results

We evaluate the model’s performance based on the number
of iterations for the convergence of each task, and the average
returns as defined in [22].

TABLE I: Performance of different models in terms of returns
on three RL tasks

Model Walker Swimmer Cheetah

TNPG 1382.6 96.0 1729.5
[24]

TRPO 1353.8 96.0 1914.0
[25]

DDPG 318.4 85.8 2148.6
[23]

DQN 121.2 32.3 765.3
[30]

BDNN 1389.6 98.1 2245.3

Table 1 gives a comparison of the average returns by
performing three tasks. It is shown that BDNN outperforms
all the other approaches in terms of the average returns. It
worth notice that due to the value-based property of DQN,
it gives the worst result in these tasks as they are continuous
control problem and the action space is also continuous.
Our BDNN model based on deep Q network overcomes this
disadvantages and gives far better results.

TABLE II: Performance for different models in terms of
convergence iterations on three RL tasks

Model Walker Swimmer Cheetah

TNPG 524 26 152
[24]

TRPO 636 23 183
[25]

DDPG 423 18 98
[23]

DQN 925 35 368
[30]

BDNN 82 5 32

Table 2 shows the number of iterations required for the
convergence of each model (no future improvement in 20
consecutive iterations). It is also shown that our new BDNN
model demonstrate at least 3 times faster convergence speed
compared to the other four approaches.

V. CONCLUSION

In this paper, a new concept of using boosting-based neural
networks for reinforcement learning is proposed. By firstly
proving the convergence of neural network identification
for general Q-learning algorithm (DQN), the boosting-based
neural networks algorithm is discussed with a focus on
the convex boosting coefficients learning. Detailed model
explanations and performance analysis are also given mathe-
matically. Simulations based on benchmark RL experiments
are designed at the end to compare the performance of
our BDNN model with other popular reinforcement learning
schemes. At a result, BDNN outperforms all other ap-
proaches by comparing their average returns and convergence
speed. Though more experiments should be conducted on
real applications in further papers, it can conclude the
BDNN approach may be a potential choice to speed up the
reinforcement learning procedure in a general context.

REFERENCES

[1] Bellman, Richard. ”Dynamic programming and Lagrange multipliers.”
Proceedings of the National Academy of Sciences 42.10 (1956): 767-
769.

[2] Bryson, Arthur E., and Ho Yu Chi. ”Applied optimal control.” (1969).
[3] Narendra, Kumpati S., and Kannan Parthasarathy. ”Identification and

control of dynamical systems using neural networks.” IEEE Transac-
tions on neural networks 1.1 (1990): 4-27.

[4] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An
introduction. Vol. 1. No. 1. Cambridge: MIT press, 1998.

[5] Sutton, Richard S. ”Learning to predict by the methods of temporal
differences.” Machine learning 3.1 (1988): 9-44.

[6] Han, Zhuo, and Narendra, Kumpati S. ”New concepts in adaptive con-
trol using multiple models.” IEEE Transactions on Automatic Control
57.1 (2012): 78-89.

[7] Rummery, Gavin A., and Mahesan Niranjan. On-line Q-learning using
connectionist systems. University of Cambridge, Department of Engi-
neering, 1994.

[8] Narendra, Kumpati S., Yu Wang, and Snehasis Mukhopadyhay. ”Fast
Reinforcement Learning using Multiple Models.”, 2016 Control and
Decision Conference, Las Vegas

[9] Powell, Warren B. Approximate Dynamic Programming: Solving the
curses of dimensionality. Vol. 703. John Wiley & Sons, 2007.

[10] Werbos, Paul J. ”A menu of designs for reinforcement learning over
time.” Neural networks for control (1990): 67-95.

[11] Glscher, Jan, et al. ”States versus rewards: dissociable neural predic-
tion error signals underlying model-based and model-free reinforcement
learning.” Neuron 66.4 (2010): 585-595.

[12] Narendra, Kumpati S., Yu Wang, and Wei Chen. ”The Rationale for
Second Level Adaptation.” arXiv preprint arXiv:1510.04989 (2015).

[13] Mnih, Volodymyr, et al. ”Human-level control through deep reinforce-
ment learning.” Nature 518.7540 (2015): 529-533.

[14] Narendra, Kumpati S., Yu Wang, and Wei Chen. ”Stability, robustness,
and performance issues in second level adaptation.” 2014 American
Control Conference. IEEE, 2014.

[15] Dean, Jeffrey, et al. ”Large scale distributed deep networks.” Advances
in neural information processing systems. 2012.

[16] Gu, Shixiang, et al. ”Continuous deep q-learning with model-based
acceleration.” arXiv preprint arXiv:1603.00748 (2016).

[17] Van Hasselt, Hado, Arthur Guez, and David Silver. ”Deep Reinforce-
ment Learning with Double Q-Learning.” AAAI. 2016.

[18] Watkins, Christopher JCH, and Peter Dayan. ”Q-learning.” Machine
learning 8.3-4 (1992): 279-292.

[19] Watkins, Christopher John Cornish Hellaby. Learning from delayed
rewards. Diss. University of Cambridge, 1989.

[20] Rummery, Gavin A., and Mahesan Niranjan. On-line Q-learning
using connectionist systems. University of Cambridge, Department of
Engineering, 1994.

[21] Hochreiter, Sepp, and Jrgen Schmidhuber. ”Long short-term memory.”
Neural computation 9.8 (1997): 1735-1780.

[22] Duan Y, Chen X, Houthooft R, et al. Benchmarking deep reinforce-
ment learning for continuous control[C]//International Conference on
Machine Learning. 2016: 1329-1338.

[23] Lillicrap, Timothy P., et al. ”Continuous control with deep reinforce-
ment learning.” arXiv preprint arXiv:1509.02971 (2015).

[24] Kakade, Sham M. ”A natural policy gradient.” Advances in neural
information processing systems. 2002.

[25] Schulman, John, et al. ”Trust region policy optimization.” International
Conference on Machine Learning. 2015.

[26] Yu Wang, and Xiaoxi Zhu. ”A Supervised Adaptive Learning-based
Fuzzy Controller for a non-linear vehicle system using Neural Network
Identification.” American Control Conference (ACC), 2016. IEEE,
2016.

[27] Narendra, Kumpati S., Snehasis Mukhopadyhay, and Yu Wang. ”Im-
proving the Speed of Response of Learning Algorithms Using Multiple
Models: An Introduction.”, the 17th Yale Workshop on Adaptive and
Learning Systems

[28] Peters, Jan, Sethu Vijaykumar, and Stefan Schaal. ”Policy gradient
methods for robot control.” Rapport nCS-03-787, University of South-
ern California (2003).

[29] Bagnell, J. Andrew, and Jeff Schneider. ”Covariant policy search.”
IJCAI, 2003.

[30] Mnih, Volodymyr, et al. ”Playing atari with deep reinforcement
learning.” arXiv preprint arXiv:1312.5602 (2013).

[31] Wang, Yu. ”A new concept using LSTM Neural Networks for dynamic
system identification.” American Control Conference (ACC), 2017.
IEEE, 2017.

